Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 13(2): 466-473, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38266181

RESUMO

We engineered HEK293T cells with a transgene encoding tetracycline-inducible expression of a Staphylococcus aureus nuclease incorporating a translocation signal. We adapted the unmodified and nuclease-engineered cell lines to grow in suspension in serum-free media, generating the HEK293TS and NuPro-2S cell lines, respectively. Transient transfection yielded 1.19 × 106 lentiviral transducing units per milliliter (TU/mL) from NuPro-2S cells and 1.45 × 106 TU/mL from HEK293TS cells. DNA ladder disappearance revealed medium-resident nuclease activity arising from NuPro-2S cells in a tetracycline-inducible manner. DNA impurity levels in lentiviral material arising from NuPro-2S and HEK293TS cells were undetectable by SYBR Safe agarose gel staining. Direct measurement by PicoGreen reagent revealed DNA to be present at 636 ng/mL in lentiviral material from HEK293TS cells, an impurity level reduced by 89% to 70 ng/mL in lentiviral material from NuPro-2S cells. This reduction was comparable to the 23 ng/mL achieved by treating HEK293TS-derived lentiviral material with 50 units/mL Benzonase.


Assuntos
Fluoreto de Fosfato Acidulado , Vetores Genéticos , Lentivirus , Animais , Humanos , Lentivirus/genética , Vetores Genéticos/genética , Células HEK293 , Transfecção , DNA/genética , Tetraciclina , Mamíferos/genética
2.
Heliyon ; 9(6): e17067, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484388

RESUMO

At present lentiviral vector production for cell and gene therapy commonly involves transient plasmid transfection of mammalian cells cultivated in serum-containing media and addition of exogenous nuclease to reduce host cell and plasmid DNA impurities. Switching from serum-containing media to chemically-defined, serum free media, and minimising the number of process additions, are both increasingly regarded as necessary steps for simplifying and potentially automating lentiviral vector bioprocessing in future. Here we adapted human embryonic kidney 293T (HEK293T) cells to grow in serum-free media and also modified these cells with transgenes designed to encode a secreted nuclease activity. Stable transfection of HEK293T cells with transgenes encoding the Staphylococcus aureus nuclease B (NucB) open reading frame with either its native secretion signal peptide, the murine Igκ chain leader sequence or a novel viral transport fusion protein, all resulted in qualitatively detectable nuclease activity in serum-free media. Serum-free transient transfection of human embryonic kidney HEK293T cells stably harbouring the transgene for NucB with its native secretion signal produced active lentivirus in the presence of medium-resident nuclease activity. This lentivirus material was able to transduce the AGF-T immortal T cell line with a green fluorescent protein reporter payload at a level of 2.05 × 105 TU/mL (±3.34 × 104 TU/mL). Sufficient nuclease activity was present in 10 µL of this unconcentrated lentivirus material to degrade 1.5 µg DNA within 2 h at 37 °C, without agitation - conditions compatible with lentivirus production. These observations demonstrate that lentiviral vector production, by transient transfection, is compatible with host cells harbouring a nuclease transgene and evidencing nuclease activity in their surrounding growth media. This work provides a solid basis for future investigations, beyond the scope of this present study, in which commercial and academic groups can apply this approach to therapeutic payloads and potentially omit exogenous nuclease bioprocess additions.

3.
Front Mol Biosci ; 9: 975054, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504719

RESUMO

Transmission electron microscopy (TEM) is a gold standard analytical method for nanoparticle characterization and is playing a valuable role in virus-like particle (VLP) characterization extending to other biological entities such as viral vectors. A dedicated TEM facility is a challenge to both small and medium-sized enterprises (SMEs) and companies operating in low-and-middle income countries (LMICs) due to high start-up and running costs. A low-voltage TEM solution with assisted image acquisition and analysis such as the MiniTEM system, coupled with Vironova Imaging and Analysis Software (VIAS) could provide an affordable and practical alternative. The MiniTEM system has a small footprint and software that enables semi-automated data collection and image analysis workflows using built-in deep learning methods (convolutional neural networks) for automation in analysis, increasing speed of information processing and enabling scaling to larger datasets. In this perspective we outline the potential and challenges in the use of TEM as mainstream analytical tool in manufacturing settings. We highlight the rationale and preliminary findings from our proof-of-concept study aiming to develop a method to assess critical quality attributes (CQAs) of VLPs and facilitate adoption of TEM in manufacturing settings. In our study we explored all the steps, from sample preparation to data collection and analysis using synthetic VLPs as model systems. The applicability of the method in product development was verified at pilot-scale during the technology transfer of dengue VLPs development from a university setting to an LMIC- based vaccine manufacturing company, demonstrating the applicability of this analytical technique to VLP vaccine characterization.

4.
Bioengineering (Basel) ; 8(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34562941

RESUMO

Vaccination is of paramount importance to global health. With the advent of the more recent pandemics, the urgency to expand the range has become even more evident. However, the potential limited availability and affordability of vaccines to resource low- and middle-income countries has created a need for solutions that will ensure cost-effective vaccine production methods for these countries. Pichia pastoris (P. pastoris) (also known as Komagataella phaffii) is one of the most promising candidates for expression of heterologous proteins in vaccines development. It combines the speed and ease of highly efficient prokaryotic platforms with some key capabilities of mammalian systems, potentially reducing manufacturing costs. This review will examine the latest developments in P. pastoris from cell engineering and design to industrial production systems with focus on vaccine development and with reference to specific key case studies.

5.
Enzyme Microb Technol ; 130: 109366, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31421726

RESUMO

This study investigates how sorbitol/methanol mixed induction affects fermentation performance, dewatering characteristics of cells during harvesting and the profile of host cell proteins (HCP) in the process fluid when producing the target recombinant protein aprotinin. Compared to standard methanol induction, sorbitol/methanol (1:1, C-mol/C-mol) mixed induction improved cellular viability from 92.8 ±â€¯0.3% to 97.7 ±â€¯0.1% although resulted in a reduced product yield from 1.65 ±â€¯0.03 g L-1 to 1.12 ±â€¯0.07 g L-1. On the other hand, average oxygen consumption rate (OUR) dropped from 241.4 ±â€¯21.3 mmol L-1 h-1 to 145.5 ±â€¯6.7 mmol L-1 h-1. Cell diameter decreased over time in the mixed induction, resulting in a D50 value of 3.14 µm at harvest compared to 3.85 µm with methanol. The reduction in cell size enhanced the maximum dewatering efficiency from 78.1 ±â€¯3.9% to 84.5 ±â€¯3.3% as evaluated by using an established ultra scale-down methodology that models pilot and industrial scale disc stack centrifugation. Seventy host cell proteins (HCPs) were identified in clarified supernatant when using sorbitol/methanol mixed induction regimen. The total number of HCPs identified with standard methanol induction was nearly one hundred. The downstream process advantage of the mixed induction lies in improved product purity by reducing both cell mortality and level of released whole cell proteins. This needs to be balanced and optimised against the observed reduction in product yield during fermentation.


Assuntos
Centrifugação , Metanol/metabolismo , Pichia/metabolismo , Sorbitol/metabolismo , Biomassa , Sobrevivência Celular , Fermentação , Oxigênio/metabolismo , Pichia/crescimento & desenvolvimento , Proteínas Recombinantes
6.
Biotechnol Prog ; 35(6): e2883, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31298810

RESUMO

In this study, we have demonstrated that the type and feeding regimen of amino acids have a significant impact on the quality as well as the quantity of DNA vectors produced. Nutrient pool and factorial design experiments were carried out in order to identify the amino acids involved in increased biomass and induction of plasmid amplification. Leucine, glycine, and histidine were responsible for increased biomass and leucine starvation in the presence of histidine was implicated in plasmid amplification. Supercoiling of the plasmid was optimized using a dual feeding strategy. As a result of this, a fed-batch fermentation strategy for the production of a 6.9 kb plasmid, pSVß, in Escherichia coli DH5α was developed. In batch fermentation, a maximum plasmid yield of 39.4 mg/L equivalent to 11.3 mg/g dry cell weight (DCW) was achieved with casein hydrolysate limitation. About 90% of plasmid was in the supercoiled (SC) form after 31 hr of fermentation but only remained so for a short period, leading to a very brief window for harvesting cells at scale. Subsequently, a fed-batch fermentation using a dual feeding strategy was employed. A mean maximum plasmid yield of 44 mg/L equivalent to 9.1 mg plasmid/g DCW was achieved. After 25 hr, 90% of plasmid was in the SC form and remained at this level for the remaining 10 hr of the fermentation, allowing adequate time for the harvesting of cells without the loss of supercoiling of product. This study emphasized that optimizing fermentation strategy and identifying the essential nutrients are beneficial for bioprocessing of plasmid DNA for therapeutic applications.


Assuntos
Aminoácidos/genética , DNA Bacteriano/genética , Vetores Genéticos/genética , Plasmídeos/genética , Biomassa , Escherichia coli/genética , Fermentação , Vetores Genéticos/uso terapêutico , Humanos , Plasmídeos/uso terapêutico
7.
Bioengineering (Basel) ; 6(2)2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31248216

RESUMO

There is an increased interest in plasmid DNA as therapeutics. This is evident in the number of ongoing clinical trials involving the use of plasmid DNA. In order to be an effective therapeutic, high yield and high level of supercoiling are required. From the bioprocessing point of view, the supercoiling level potentially has an impact on the ease of downstream processing. We approached meeting these requirements through plasmid engineering. A 7.2 kb plasmid was developed by the insertion of a bacteriophage Mu strong gyrase-binding sequence (Mu-SGS) to a 6.8 kb pSVß-Gal and it was used to transform four different E. coli strains, and cultured in order to investigate the Mu-SGS effect and dependence on strain. There was an increase of over 20% in the total plasmid yield with pSVß-Gal398 in two of the strains. The supercoiled topoisomer content was increased by 5% in both strains leading to a 27% increase in the overall yield. The extent of supercoiling was examined using superhelical density (σ) quantification with pSVß-Gal398 maintaining a superhelical density of -0.022, and pSVß-Gal -0.019, in both strains. This study has shown that plasmid modification with the Mu-phage SGS sequence has a beneficial effect on improving not only the yield of total plasmid but also the supercoiled topoisomer content of therapeutic plasmid DNA during bioprocessing.

8.
Biotechnol Prog ; 34(1): 58-68, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28748655

RESUMO

High throughput automated fermentation systems have become a useful tool in early bioprocess development. In this study, we investigated a 24 x 15 mL single use microbioreactor system, ambr 15f, designed for microbial culture. We compared the fed-batch growth and production capabilities of this system for two Escherichia coli strains, BL21 (DE3) and MC4100, and two industrially relevant molecules, hGH and scFv. In addition, different carbon sources were tested using bolus, linear or exponential feeding strategies, showing the capacity of the ambr 15f system to handle automated feeding. We used power per unit volume (P/V) as a scale criterion to compare the ambr 15f with 1 L stirred bioreactors which were previously scaled-up to 20 L with a different biological system, thus showing a potential 1,300 fold scale comparability in terms of both growth and product yield. By exposing the cells grown in the ambr 15f system to a level of shear expected in an industrial centrifuge, we determined that the cells are as robust as those from a bench scale bioreactor. These results provide evidence that the ambr 15f system is an efficient high throughput microbial system that can be used for strain and molecule selection as well as rapid scale-up. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:58-68, 2018.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Reatores Biológicos , Biotecnologia , Escherichia coli/crescimento & desenvolvimento , Animais , Biomassa , Células CHO , Cricetinae , Cricetulus , Escherichia coli/genética , Fermentação/genética , Oxigênio/metabolismo
9.
Biotechnol Lett ; 39(12): 1865-1873, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28875244

RESUMO

OBJECTIVES: To reduce unwanted Fab' leakage from an autonucleolytic Escherichia coli strain, which co-expresses OmpA-signalled Staphylococcal nuclease and Fab' fragment in the periplasm, by substituting in Serratial nuclease and the DsbA periplasm translocation signal as alternatives. RESULTS: We attempted to genetically fuse a nuclease from Serratia marcescens to the OmpA signal peptide but plasmid construction failed, possibly due to toxicity of the resultant nuclease. Combining Serratial nuclease to the DsbA signal peptide was successful. The strain co-expressing this nuclease and periplasmic Fab' grew in complex media and exhibited nuclease activity detectable by DNAse agar plate but its growth in defined medium was retarded. Fab' coexpression with Staphylococcal nuclease fused to the DsbA signal peptide resulted in cells exhibiting nuclease activity and growth in defined medium. In cultivation to high cell density in a 5 l bioreactor, DsbA-fused Staphylococcal nuclease co-expression coincided with reduced Fab' leakage relative to the original autonucleolytic Fab' strain with OmpA-fused staphylococcal nuclease. CONCLUSIONS: We successfully rescued Fab' leakage back to acceptable levels and established a basis for future investigation of the linkage between periplasmic nuclease expression and leakage of co-expressed periplasmic Fab' fragment to the surrounding growth media.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Fragmentos Fab das Imunoglobulinas/genética , Isomerases de Dissulfetos de Proteínas/genética , Sinais Direcionadores de Proteínas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Reatores Biológicos/microbiologia , Sobrevivência Celular , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Fragmentos Fab das Imunoglobulinas/metabolismo , Engenharia Metabólica , Isomerases de Dissulfetos de Proteínas/metabolismo
10.
Microb Cell Fact ; 16(1): 108, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28619018

RESUMO

BACKGROUND: The production of recombinant proteins containing disulfide bonds in Escherichia coli is challenging. In most cases the protein of interest needs to be either targeted to the oxidizing periplasm or expressed in the cytoplasm in the form of inclusion bodies, then solubilized and re-folded in vitro. Both of these approaches have limitations. Previously we showed that soluble expression of disulfide bonded proteins in the cytoplasm of E. coli is possible at shake flask scale with a system, known as CyDisCo, which is based on co-expression of a protein of interest along with a sulfhydryl oxidase and a disulfide bond isomerase. With CyDisCo it is possible to produce disulfide bonded proteins in the presence of intact reducing pathways in the cytoplasm. RESULTS: Here we scaled up production of four disulfide bonded proteins to stirred tank bioreactors and achieved high cell densities and protein yields in glucose fed-batch fermentations, using an E. coli strain (BW25113) with the cytoplasmic reducing pathways intact. Even without process optimization production of purified human single chain IgA1 antibody fragment reached 139 mg/L and hen avidin 71 mg/L, while purified yields of human growth hormone 1 and interleukin 6 were around 1 g/L. Preliminary results show that human growth hormone 1 was also efficiently produced in fermentations of W3110 strain and when glucose was replaced with glycerol as the carbon source. CONCLUSIONS: Our results show for the first time that efficient production of high yields of soluble disulfide bonded proteins in the cytoplasm of E. coli with the reducing pathways intact is feasible to scale-up to bioreactor cultivations on chemically defined minimal media.


Assuntos
Citoplasma/química , Dissulfetos/química , Escherichia coli/genética , Animais , Avidina/análise , Avidina/biossíntese , Avidina/genética , Reatores Biológicos , Galinhas , Meios de Cultura/química , Citoplasma/metabolismo , Escherichia coli/química , Escherichia coli/citologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Feminino , Fermentação , Glucose/metabolismo , Glicerol/metabolismo , Hormônio do Crescimento Humano/biossíntese , Hormônio do Crescimento Humano/genética , Humanos , Fragmentos de Imunoglobulinas/biossíntese , Fragmentos de Imunoglobulinas/genética , Corpos de Inclusão/química , Corpos de Inclusão/metabolismo , Interleucina-6/biossíntese , Interleucina-6/genética , Oxirredução , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química
11.
J Microbiol Methods ; 127: 111-122, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27211507

RESUMO

Advances in synthetic genomics are now well underway in yeasts due to the low cost of synthetic DNA. These new capabilities also bring greater need for quantitating the presence, loss and rearrangement of loci within synthetic yeast genomes. Methods for achieving this will ideally; i) be robust to industrial settings, ii) adhere to a global standard and iii) be sufficiently rapid to enable at-line monitoring during cell growth. The methylotrophic yeast Pichia pastoris (P. pastoris) is increasingly used for industrial production of biotherapeutic proteins so we sought to answer the following questions for this particular yeast species. Is time-consuming DNA purification necessary to obtain accurate end-point polymerase chain reaction (e-pPCR) and quantitative PCR (qPCR) data? Can the novel linear regression of efficiency qPCR method (LRE qPCR), which has properties desirable in a synthetic biology standard, match the accuracy of conventional qPCR? Does cell cultivation scale influence PCR performance? To answer these questions we performed e-pPCR and qPCR in the presence and absence of cellular material disrupted by a mild 30s sonication procedure. The e-pPCR limit of detection (LOD) for a genomic target locus was 50pg (4.91×10(3) copies) of purified genomic DNA (gDNA) but the presence of cellular material reduced this sensitivity sixfold to 300pg gDNA (2.95×10(4) copies). LRE qPCR matched the accuracy of a conventional standard curve qPCR method. The presence of material from bioreactor cultivation of up to OD600=80 did not significantly compromise the accuracy of LRE qPCR. We conclude that a simple and rapid cell disruption step is sufficient to render P. pastoris samples of up to OD600=80 amenable to analysis using LRE qPCR which we propose as a synthetic biology standard.


Assuntos
Genoma Fúngico , Pichia/química , Pichia/genética , Reação em Cadeia da Polimerase/métodos , Biologia Sintética/métodos , Primers do DNA , Genômica , Modelos Lineares , Pichia/fisiologia
12.
Biotechnol Bioeng ; 113(9): 2064-71, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26928284

RESUMO

With the recent revival of the promise of plasmid DNA vectors in gene therapy, a novel synthetic biology approach was used to enhance the quantity, (yield), and quality of the plasmid DNA. Quality was measured by percentage supercoiling and supercoiling density, as well as improving segregational stability in fermentation. We examined the hypothesis that adding a Strong Gyrase binding Site (SGS) would increase DNA gyrase-mediated plasmid supercoiling. SGS from three different replicons, (the Mu bacteriophage and two plasmids, pSC101 and pBR322) were inserted into the plasmid, pUC57. Different sizes of these variants were transformed into E. coli DH5α, and their supercoiling properties and segregational stability measured. A 36% increase in supercoiling density was found in pUC57-SGS, but only when SGS was derived from the Mu phage and was the larger sized version of this fragment. These results were also confirmed at fermentation scale. Total percentage supercoiled monomer was maintained to 85-90%. A twofold increase in plasmid yield was also observed for pUC57-SGS in comparison to pUC57. pUC57-SGS displayed greater segregational stability than pUC57-cer and pUC57, demonstrating a further potential advantage of the SGS site. These findings should augment the potential of plasmid DNA vectors in plasmid DNA manufacture. Biotechnol. Bioeng. 2016;113: 2064-2071. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.


Assuntos
Engenharia Celular/métodos , DNA Super-Helicoidal/isolamento & purificação , DNA Super-Helicoidal/metabolismo , Escherichia coli/genética , Plasmídeos/genética , DNA Super-Helicoidal/análise , DNA Super-Helicoidal/genética , Escherichia coli/metabolismo , Fermentação , Terapia Genética
13.
Biotechnol Bioeng ; 112(8): 1714-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25728530

RESUMO

The Ff filamentous bacteriophages show potential as a new class of therapeutics, displaying utility in materials science as well as pharmaceutical applications. These phages are produced by the infection of E. coli, a Gram-negative bacterium which unavoidably sheds endotoxins into the extracellular space during growth. Since endotoxin molecules are highly immunoreactive, separation from the phage product is of critical importance, particularly those developed for human therapeutic use. The properties of M13, one of the Ff group, present a purification challenge chiefly because the standard scalable method for endotoxin removal from proteins-anion exchange chromatography-is not applicable due to pI similarity between the particles. This article examines the potential of polyethylene glycol (PEG)-NaCl precipitation as a scalable method for the separation of endotoxins from phage M13. Precipitation of M13 by 2% (w/v) PEG 6 000, 500 mM NaCl reduced endotoxin contamination of the phage product by 88%, but additional precipitation rounds did not maintain this proportional decrease. Dynamic light scattering was subsequently used to determine the effectiveness of a detergent to disassociate endotoxin molecules from M13. As a result, PEG-NaCl precipitation was supplemented with up to 2% (v/v) Triton X-100 to improve separation. A 5.7 log10 reduction in endotoxin concentration was achieved over three rounds of precipitation whilst retaining over 97% of the phage. This method compares favorably with the well-known ATPS (Triton X-114) technique for endotoxin removal from protein solutions.


Assuntos
Bacteriófagos/isolamento & purificação , Fracionamento Químico/métodos , Precipitação Química , Endotoxinas/isolamento & purificação , Tecnologia Farmacêutica/métodos , Octoxinol/química , Polietilenoglicóis/química , Cloreto de Sódio/química
14.
Biochim Biophys Acta ; 1853(3): 756-63, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25554517

RESUMO

Numerous therapeutic proteins are expressed in Escherichia coli and targeted to the periplasm in order to facilitate purification and enable disulfide bond formation. Export is normally achieved by the Sec pathway, which transports proteins through the plasma membrane in a reduced, unfolded state. The Tat pathway is a promising alternative means of export, because it preferentially exports correctly folded proteins; however, the reducing cytoplasm of standard strains has been predicted to preclude export by Tat of proteins that contain disulfide bonds in the native state because, in the reduced state, they are sensed as misfolded and rejected. Here, we have tested a series of disulfide-bond containing biopharmaceuticals for export by the Tat pathway in CyDisCo strains that do enable disulfide bond formation in the cytoplasm. We show that interferon α2b, human growth hormone (hGH) and two antibody fragments are exported with high efficiency; surprisingly, however, they are efficiently exported even in the absence of cytoplasmic disulfide formation. The exported proteins acquire disulfide bonds in the periplasm, indicating that the normal disulfide oxidation machinery is able to act on the proteins. Tat-dependent export of hGH proceeds even when the disulfide bonds are removed by substitution of the Cys residues involved, suggesting that these substrates adopt tertiary structures that are accepted as fully-folded by the Tat machinery.


Assuntos
Dissulfetos/metabolismo , Proteínas de Escherichia coli/fisiologia , Hormônio do Crescimento Humano/metabolismo , Fragmentos de Imunoglobulinas/metabolismo , Interferon-alfa/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Periplasma/metabolismo , Sequência de Aminoácidos , Anticorpos/química , Anticorpos/metabolismo , Dissulfetos/química , Escherichia coli/metabolismo , Humanos , Interferon alfa-2 , Redes e Vias Metabólicas , Dados de Sequência Molecular , Organismos Geneticamente Modificados , Oxirredução , Transporte Proteico , Proteínas Recombinantes/metabolismo
15.
Biotechnol Bioeng ; 111(1): 196-201, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23860965

RESUMO

Transgenic tobacco roots offer a potential alternative to leaves for monoclonal antibody (MAb) production. A possible method for extraction of MAbs from roots is by homogenization, breaking the roots into fragments to release the antibody. This process was assessed by shearing 10 mm root sections ("roots") in a 24 mL ultra-scale down shearing device, including an impeller with serrated blade edges, intended to mimic the action of a large-scale homogenizer. Size distributions of the remaining intact roots and root fragments were obtained as a function of shearing time. The data suggest that about 36% of the roots could not be broken under the prevailing conditions and, beyond these unbreakable roots, the fragmentation was approximately first order with respect to intact root number. It was postulated that root breakage in such a high shearing device was due to root-impeller collisions and the particle size data suggest that roots colliding with the impeller were completely fragmented into debris particles of the order of 0.1 mm in length. IgG release normalized to release by grinding appeared to lag behind the number of roots that had fragmented, suggesting that a process of leakage followed fragmentation in the ultra-scale down shearing device.


Assuntos
Anticorpos Monoclonais/metabolismo , Biotecnologia/instrumentação , Imunoglobulina G/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas/metabolismo , Anticorpos Monoclonais/análise , Biotecnologia/métodos , Imunoglobulina G/análise
16.
Biotechnol Prog ; 30(2): 281-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24376243

RESUMO

Numerous high-value therapeutic proteins are produced in Escherichia coli and exported to the periplasm, as this approach simplifies downstream processing and enables disulfide bond formation. Most recombinant proteins are exported by the Sec pathway, which transports substrates across the plasma membrane in an unfolded state. The Tat system also exports proteins to the periplasm, but transports them in a folded state. This system has attracted interest because of its tendency to transport correctly folded proteins, but this trait renders it unable to export proteins containing disulfide bonds since these are normally acquired only in the periplasm; reduced substrates tend to be recognized as incorrectly folded and rejected. In this study we have used a series of novel strains (termed CyDisCo) which oxidise disulfide bonds in the cytoplasm, and we show that these cells efficiently export a range of disulfide-containing proteins when a Tat signal peptide is attached. These test proteins include alkaline phosphatase (PhoA), a phytase containing four disulfide bonds (AppA), an antiinterleukin 1ß scFv and human growth hormone. No export of PhoA or AppA is observed in wild-type cells lacking the CyDisCo factors. The PhoA, AppA and scFv proteins were exported in an active form by Tat in the CyDisCo strain, and mass spectrometry showed that the vast majority of the scFv protein was disulfide-bonded and correctly processed. The evidence indicates that this combination of Tat + CyDisCo offers a novel means of exporting active, correctly folded disulfide bonded proteins to the periplasm.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Periplasma/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Engenharia Celular , Dissulfetos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fermentação , Proteínas de Membrana Transportadoras/genética , Periplasma/química , Dobramento de Proteína , Proteínas Recombinantes/genética
17.
FEBS J ; 280(16): 3810-21, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23745597

RESUMO

The twin-arginine translocation (Tat) system transports folded proteins across the plasma membrane in bacteria, and heterologous proteins can be exported by this pathway if a Tat-type signal peptide is present at the N-terminus. The system thus has potential for biopharmaceutical production in Escherichia coli, where export to the periplasm is often a favoured approach. Previous studies have shown that E. coli cells can export high levels of protein by the Tat pathway, and the protein product accummulates almost exclusively in the periplasm. In this study, we analysed E. coli cells that express the Bacillus subtilis TatAdCd system in place of the native TatABC system. We show that a heterologous model protein, comprising the TorA signal peptide linked to green fluorescent protein (TorA-GFP), is efficiently exported by the TatAdCd system. However, whereas the GFP is exported initially to the periplasm during batch fermentation, the mature protein is increasingly found in the extracellular culture medium. By the end of a 16-h fermentation, ~ 90% of exported GFP is present in the medium as active mature protein. The total protein profiles of the medium and periplasm are essentially identical, confirming that the outer membrane becomes leaky during the fermentation process. The cells are otherwise intact, and there is no large-scale release of cytoplasmic contents. Export levels are relatively high, with ~ 0.35 g GFP·L⁻¹ culture present in the medium. This system thus offers a means of producing recombinant protein in E. coli and harvesting directly from the medium, with potential advantages in terms of ease of purification and downstream processing.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Sinais Direcionadores de Proteínas , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Bactérias/genética , Técnicas de Cultura Celular por Lotes , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/ultraestrutura , Fermentação , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Cinética , Proteínas de Membrana Transportadoras/genética , Oxirredutases N-Desmetilantes/biossíntese , Oxirredutases N-Desmetilantes/química , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
Traffic ; 14(2): 165-75, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23067392

RESUMO

Eukaryotic cells have the ability to uptake and transport endogenous and exogenous DNA in their nuclei, however little is known about the specific pathways involved. Here we show that the nuclear transport receptor importin 7 (imp7) supports nuclear import of supercoiled plasmid DNA and human mitochondrial DNA in a Ran and energy-dependent way. The imp7-dependent pathway was specifically competed by excess DNA but not by excess of maltose-binding protein fused with the classical nuclear localizing signal (NLS) or the M9 peptides. Transport of DNA molecules complexed with poly-l-lysine was impaired in intact cells depleted of imp7, and DNA complexes remained localized in the cytoplasm. Poor DNA nuclear import in cells depleted of imp7 directly correlated with lower gene expression levels in these cells compared to controls. Inefficient nuclear import of transfected DNA induced greater upregulation of the interferon pathway, suggesting that rapid DNA nuclear import may prevent uncontrolled activation of the innate immune response. Our results provide evidence that imp7 is a non-redundant component of an intrinsic pathway in mammalian cells for efficient accumulation of exogenous and endogenous DNA in the nucleus, which may be critical for the exchange of genetic information between mitochondria and nuclear genomes and to control activation of the innate immune response.


Assuntos
Núcleo Celular/metabolismo , DNA Mitocondrial/metabolismo , DNA Super-Helicoidal/metabolismo , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/genética , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Humanos , Imunidade Inata , Interferons/metabolismo , Carioferinas/genética , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/metabolismo , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Polilisina/farmacologia , Sinais Direcionadores de Proteínas/genética , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
19.
Biotechnol Prog ; 28(4): 1029-36, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22641601

RESUMO

Pichia pastoris is becoming a desirable host in the biopharmaceutical industry for therapeutics production. It grows on methanol to high cell densities ≥100 g DCW/L and secretes foreign proteins at high titers. However, the culture conditions to reach high cell densities pose a challenge to the processability by primary recovery operations, in particular centrifugation, used for cell removal. This work aims to assess the impact of recombinant P. pastoris strain selection on centrifugal dewatering. Normally, the choice of P. pastoris recombinant strain is based on best target protein expression levels; however, it is unknown whether the choice of strain will have an impact on performance of centrifugation operation. To achieve this aim, a previously developed laboratory ultra-scale down (USD) methodology that successfully predicted centrifugal dewatering of pilot-scale disk-type machines, was used in this work. Two recombinant P. pastoris strains, namely a X-33 and a glycoengineered Pichia strain, were used to perform fermentations secreting different products. The resulting harvested fermentation culture properties were analyzed and the dewatering performances of a pilot- and a large-scale disk-type centrifuge were evaluated using the USD methodology. The choice of P. pastoris strain was found to have a considerable impact on dewatering performance, with P. pastoris X-33 strain reaching better dewatering levels than the glycoengineered strain. The USD method proved to be a useful tool to determine optimal conditions under which the large scale centrifuge needed to be operated, reducing the need for repeated pilot-scale runs during early stages of process development for therapeutic products.


Assuntos
Centrifugação/métodos , Pichia/crescimento & desenvolvimento , Biomassa , Fermentação , Microbiologia Industrial , Metanol/metabolismo , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
20.
Biotechnol Bioeng ; 109(10): 2533-42, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22539025

RESUMO

Numerous high-value recombinant proteins that are produced in bacteria are exported to the periplasm as this approach offers relatively easy downstream processing and purification. Most recombinant proteins are exported by the Sec pathway, which transports them across the plasma membrane in an unfolded state. The twin-arginine translocation (Tat) system operates in parallel with the Sec pathway but transports substrate proteins in a folded state; it therefore has potential to export proteins that are difficult to produce using the Sec pathway. In this study, we have produced a heterologous protein (green fluorescent protein; GFP) in Escherichia coli and have used batch and fed-batch fermentation systems to test the ability of the newly engineered Tat system to export this protein into the periplasm under industrial-type production conditions. GFP cannot be exported by the Sec pathway in an active form. We first tested the ability of five different Tat signal peptides to export GFP, and showed that the TorA signal peptide directed most efficient export. Under batch fermentation conditions, it was found that TorA-GFP was exported efficiently in wild type cells, but a twofold increase in periplasmic GFP was obtained when the TatABC components were co-expressed. In both cases, periplasmic GFP peaked at about the 12 h point during fermentation but decreased thereafter, suggesting that proteolysis was occurring. Typical yields were 60 mg periplasmic GFP per liter culture. The cells over-expressed the tat operon throughout the fermentation process and the Tat system was shown to be highly active over a 48 h induction period. Fed-batch fermentation generated much greater yields: using glycerol feed rates of 0.4, 0.8, and 1.2 mL h(-1), the cultures reached OD(600) values of 180 and periplasmic GFP levels of 0.4, 0.85, and 1.1 g L(-1) culture, respectively. Most or all of the periplasmic GFP was shown to be active. These export values are in line with those obtained in industrial production processes using Sec-dependent export approaches.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Engenharia Metabólica/métodos , Periplasma/metabolismo , Proteínas Recombinantes/metabolismo , Biotecnologia/métodos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana Transportadoras/genética , Transporte Proteico , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...